Ice Cream Science Project: How to Make Ice Cream in 3 Simple Steps

I scream, you scream, we all scream "SCIENCE" with this ice cream science project!

Feel the chill this winter as you learn the science of cold by making homemade ice cream! This vanilla or chocolate ice cream science project doesn’t require any fancy equipment, just plastic food storage bags, elbow grease, and chemistry!

Recommend age: 5+; younger scientists may need help measuring ingredients and shaking the bag.

Mess Alert: This activity can be messy since the bags can leak! You may want to shake the bags outside or over a sink.

Materials you will need:

  • ½ cup of whole milk or half-and-half
  • 1 tablespoon of sugar
  • ¼ teaspoon of vanilla
  • 1 tablespoon of cocoa powder
  • 6 tablespoons of rock salt or ice cream salt
  • 1 pint-size plastic food storage bag (e.g., Ziploc)
  • 1 gallon-size plastic food storage bag
  • Ice cubes
  • Duct tape
Completed chocolate ice cream science project

Directions:

Step 1:

Fill the gallon-size plastic food storage bag halfway with ice, and add the rock salt to the ice. Seal the bag so it doesn’t spill while you prepare the ice cream ingredients.

Tip: You can add more than one bag of ice cream to the bag of ice and shake them at the same time. If you do make more than one bag, you can use a Sharpie to label the bags of ice cream to tell them apart.

add rock salt to ice cream science project

Step 2:

Add the milk and sugar to the pint-size plastic food storage bag. Optional: add cocoa powder to the pint-size bag to make chocolate ice cream. (Add the vanilla to the pint-size bag, even chocolate ice cream has a little vanilla in it!)

Squeeze the excess air out of the pint-size bag and seal it, and tape the seal shut with duct tape to keep it from spilling. Shake the pint-size bag for a few seconds to mix the ice cream ingredients.

Tip: ½ cup of milk will make about 1 scoop of ice cream, so double the recipe if you want more. But don't increase the proportions more than that – a large amount might be too big for kids to pick-up because the ice itself is heavy.

adding vanilla to ice cream science project

While you're making and shaking your ice cream talk about physical and chemical changes  and encourage your scientist to answer the following:

  • What does your ice cream look like?
  • Why do you think the ingredients in the pint-size bag turn to ice cream?
  • What do you think the shaking did?
  • Why do you think we added salt to the ice?
  •  What physical or chemical changes did you observe while making your ice cream?
  • What other examples of physical or chemical changes can you think of?
  • Dive deeper into a science topic with the “Learn More” section.

Step 3:

Open the gallon-size bag and put the pint-size bag inside it, and carefully seal the gallon-size bag again. Make sure it is completely shut!

Shake until the mixture in the pint-size bag is ice cream, which takes about 5 minutes.

Wipe off or rinse the top of the pint-size bag with cold water to remove any salt, then open the bag carefully, add any toppings you would like, and enjoy your ice cream!

seal liquid ingredients before shaking

Expand on the activity! 

The Science: Physical and Chemical Changes

We talk about two types of changes in chemistry: physical changes and chemical changes. We also talk a lot about matter, which is is anything that takes up space.

In a physical change, the form of matter is changed, while its chemical identity remains the same.

  • Think about cutting a piece of paper into bits. It’s still paper, just in smaller pieces. Physical changes are also reversible. You could tape the paper back together! Other examples of physical changes include boiling, melting, freezing, dissolving, and mixing.

In a chemical change, the chemical reaction occurs. The chemical reaction changes the chemical identity of the matter, and new products are formed that you can’t easily reverse.

  • Think of a campfire. The fire takes a log and creates ash and smoke, two chemically-distinct products.

There are 5 signs that a chemical reaction has occurred. They’re easy to remember… just think about F.A.R.T.S.

Fizzes: Did the reaction produce bubbles or gas?

Aroma: Did the reaction produce a smell?

Re-color: Did the reaction produce a new color?

Temperature: Did the reaction produce a temperature change or release light?

New Substance: Did the reaction produce a new substance?

When making ice cream, you’re using physical changes. You mix and dissolve the sugar into the milk, but this doesn’t change the chemical structure of the milk and you could remove the sugar is you tried.

When you shake your bag, you’re freezing the milk, which means the water in it is turning from a liquid (water) into a solid (ice). This is also a physical change! We still see lots of physical and chemical changes in the kitchen. Which ones can you think of?

Learn More: Chemistry

Why do we shake our ice cream science project instead of just popping the ice cream in the freezer?

Ice cream is an emulsion. In an emulsion, small droplets of one liquid are dispersed (or spread out) throughout another. When you shake the ice cream, you disperse the ice crystals, fat molecules, and air in the other ingredients.

The more you shake, the smaller the ice crystals get and the more air you add. This makes the ice cream creamier! We add salt to the ice so we can shake the ice cream long enough to emulsify it.

Every substance has a melting point, which is the temperature it melts or freezes at. For freshwater, the melting temperature is 32ºF/0ºC. Adding rock salt lowers the melting point of water. A 10% salt solution freezes at about 20ºF/-6ºC.

With a lower melting point, we can shake the ice cream longer to better diffuse the different parts. If it froze faster, this would be much harder to do.

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!

How to Make Homemade Butter in 5 Simple Steps

I can't believe it IS butter! Learn how to make homemade butter with a little science and a lot of energy!  

Shake off the excess energy as you make butter and learn about the chemistry of the food we eat every day! Join us as we learn how to make homemade butter in 5 simple steps, using only 3 ingredients, for 1 delicious experiment! 

Materials you will need:

  • ½ cup heavy cream

  • A small jar or container with a tight fitting lid

  • Salt (optional)

Directions:

Step 1:

Let your half cup of cream sit a while until it has warmed up to almost room temperature.

 

Step 2:

Pour the cream into the jar and seal the lid tightly. Make sure the lid is completely sealed; otherwise, cream may leak out of the container!

seal your homemade butter (1)

Step 3:

Start shaking! It should take between 5-7 minutes (or the length of this dance party) of shaking to make your homemade butter.

 

Step 4:

Once you have both a solid and a liquid in your jar, open the lid and rinse the homemade butter under cold water to get rid of all the liquid.

rinse your homemade butter

Step 5:

Refrigerate your butter for up to 10 days (or eat it). If you would like, you can add a pinch of salt to your butter before storing it.

the last step_ you have homemade butter

Expand on the activity!

The Science: 

  • When whole milk sits out, tiny fat molecules float to the top, forming a layer of cream that can be skimmed and collected. To make butter, the cream is agitated (stirred up) so that the fat molecules get shaken out of position and clump together.
  • As you shake your cream, you are breaking the fat out of its little bundles and mixing it with air, just like whipped cream. Your jar will feel very light.

  • Then, the fat globules will begin sticking to each other. You will start to see a liquid and a solid. The solid is butter, the liquid is buttermilk.

Did you know?

  • The color of butter comes from what the animal has been eating. Yellow is from carotene, which cows get from the plants they eat.
  • Butter has about the same density as ice.
  • Butter is an ancient prepared food, having been made by people at least 4,000 years ago. Some of the earliest known recipes for making butter call for the use of a container made from animal skin. The skin would be sewed together tightly, leaving a small opening through which to add fatty milk or cream. The vessel would then be suspended, such as from wooden poles, and swung until butter formed.

Try some more kitchen chemistry!

DIY Rock Candy

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!

Kitchen Chemistry for Kids: Get Hands-On, Then Get Your Snack On

Learning has never been sweeter with this kitchen chemistry for kids of all ages!

Everything we interact within our day-to-day lives is made out of molecules. There are countless different kinds of molecules, each made out of atoms of different elements.

This kitchen chemistry for kids will help build an understanding of atoms and molecules as we create our own atomic marshmallow models!

Materials you will need:

  • Colored marshmallows
    *If you don’t have marshmallows, you can use clay, playdough, etc...
  • Toothpicks 
Materials for Kitchen Chemistry for Kids

Molecules:

Hydrogen (H2):

  • Some molecules are homonuclear, which means they are made up of just two atoms of the same element. Let’s make a homonuclear hydrogen molecule.
  • To make a hydrogen molecule, grab 2 marshmallows of the same color. Then connect them with toothpicks, as shown in the picture.
Kitchen Chemistry for Kids- hydrogen molecule

Water (H2O – Dihydrogen Monoxide):

  • The most important molecule for life on Earth is H2O, or water. It is made of 2 hydrogen atoms and 1 oxygen atom.
  • To make a water molecule, grab 2 marshmallows of one color and 1 of another. Then connect them with toothpicks, as shown in the picture. They should make a V shape.
Kitchen Chemistry for Kids- water molecule

Salt (NaCl – Sodium Chloride):

  • Salt molecules form cube-shaped crystals.
  • To make a salt molecule, you will need 8 marshmallows total, 4 of one color, and 4 of another. Connect them together in a cube, as shown in the picture
Kitchen Chemistry for Kids- salt molecule

Expand on this activity!

What other molecules can you make? Can you make methane? What about hydrogen peroxide? What’s the biggest molecule you can make? Check out MolView to see the digital models of all kinds of substances that you can base your marshmallow models off of!

Did you make your own marshmallow atomic models? We’d love to see how they turned out! Snap a photo of your models and submit it to our Science Showcase or tag Orlando Science Center and use #OSCatHome on social media! You might be featured on our channels.

The Science:

  • Real molecules aren’t held together by toothpicks. Instead, the atoms are bound together by positive and negative charges.
  • Water molecules are held together by covalent bonds, meaning they share negatively-charged particles called electrons.
  • Salt is a different kind of molecule, one that is made of ions. This happens when an atom gains or loses an electron. Sodium (Na) loves to get rid of electrons, so it is usually positive. Chloride (Cl) loves to steal electrons, so it is usually negative.
  • Molecules like this do not share electrons like water molecules do with covalent bonds. Instead, one atom gives an electron to the other, resulting in two charged atoms (ions). Just like with magnets, opposites attract. So, the positive sodium atoms and the negative chloride atoms will group together in the pattern that you’ve made. We call this an ionic bond.

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!