How to Make Homemade Butter in 5 Simple Steps

I can't believe it IS butter! Learn how to make homemade butter with a little science and a lot of energy!  

Shake off the excess energy as you make butter and learn about the chemistry of the food we eat every day! Join us as we learn how to make homemade butter in 5 simple steps, using only 3 ingredients, for 1 delicious experiment! 

Materials you will need:

  • ½ cup heavy cream

  • A small jar or container with a tight fitting lid

  • Salt (optional)

Directions:

Step 1:

Let your half cup of cream sit a while until it has warmed up to almost room temperature.

 

Step 2:

Pour the cream into the jar and seal the lid tightly. Make sure the lid is completely sealed; otherwise, cream may leak out of the container!

seal your homemade butter (1)

Step 3:

Start shaking! It should take between 5-7 minutes (or the length of this dance party) of shaking to make your homemade butter.

 

Step 4:

Once you have both a solid and a liquid in your jar, open the lid and rinse the homemade butter under cold water to get rid of all the liquid.

rinse your homemade butter

Step 5:

Refrigerate your butter for up to 10 days (or eat it). If you would like, you can add a pinch of salt to your butter before storing it.

the last step_ you have homemade butter

Expand on the activity!

The Science: 

  • When whole milk sits out, tiny fat molecules float to the top, forming a layer of cream that can be skimmed and collected. To make butter, the cream is agitated (stirred up) so that the fat molecules get shaken out of position and clump together.
  • As you shake your cream, you are breaking the fat out of its little bundles and mixing it with air, just like whipped cream. Your jar will feel very light.

  • Then, the fat globules will begin sticking to each other. You will start to see a liquid and a solid. The solid is butter, the liquid is buttermilk.

Did you know?

  • The color of butter comes from what the animal has been eating. Yellow is from carotene, which cows get from the plants they eat.
  • Butter has about the same density as ice.
  • Butter is an ancient prepared food, having been made by people at least 4,000 years ago. Some of the earliest known recipes for making butter call for the use of a container made from animal skin. The skin would be sewed together tightly, leaving a small opening through which to add fatty milk or cream. The vessel would then be suspended, such as from wooden poles, and swung until butter formed.

Try some more kitchen chemistry!

DIY Rock Candy

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!

Simple Spooky STEM Activities to Scare Up Some Fun

Get into the Halloween spirit with these simple spooky STEM activities!

Halloween is one of our favorite holidays at the Orlando Science Center, so we’ve rounded up some of our favorite simple spooky STEM activities that you can do at home!

We’ve also included instructions on how to give some activities a special Halloween twist. From making the slimiest slime to exploring art with candy, find them all in one place below.

STEM Slime Time!

Our staff concocted the slimiest slime recipe for you to try at home! For glowing slime, use tonic water or highlighter water instead of regular water. Click here to make highlighter water!

Spooky Oobleck

Make an ooey-gooey mess with just two ingredients! Learn about the states of matter and viscosity, practice lab skills like measuring and mixing with this educational messy science experiment that's so fun, you won't even realize you're learning!

To make pumpkin oobleck, color the oobleck orange with paint or food coloring and add pumpkin-scented oil. Alternatively, you can mix a can of pumpkin puree in a pitcher of water and use it in place of the regular water.

Ectoplasm Detector

Have you ever wanted to make something glow under a blacklight? Let us teach you one of our favorite hacks, which you can turn into an Ectoplasm Detector!

Write or draw messages, then hide them in a dark place. Make the Ectoplasm Detector by following the instructions for your DIY Blacklight Hack then use your ectoplasm detector to find and reveal the ghostly messages!

Ghosts in the Graveyard

Have you ever wanted to make something glow under a blacklight? Let us teach you one of our favorite hacks, which you can turn into an Ectoplasm Detector!

Write or draw messages, then hide them in a dark place. Make the Ectoplasm Detector by following the instructions for your DIY Blacklight Hack then use your ectoplasm detector to find and reveal the ghostly messages!

Sweet Science

Trick or Treat! In this experiment, science is sweet! Use a little bit of candy to make Halloween pictures that swirl like magic, to explore chemistry, and to practice making predictions and observations.

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!

What to do with Leftover Candy? Learn Some Sweet Science with this STEM Experiment

Are you wondering what to do with leftover candy? You're in for a treat!

This experiment is sugar, and spice, and everything science! Join us as we dive into some chemistry (and our candy stash) and we'll give you a fun trick for what to do with your leftover treats. 

We'll use a little bit of candy to make pictures that swirl like magic, to explore chemistry, and to practice making predictions and observations.

Materials you will need:

  • Candy with a hard shell, like Skittles or M&M’s
  • Warm water
  • Shallow dish or plate that can hold liquid
skittles in a dish and water -leftover candy materials

Directions:

Step 1:

Arrange your candy in a design on your dish.

  • You can try arranging them in a circle around the edge of the dish, or making pictures with them. Since we're using Halloween candy, we made a pumpkin.
skittles arranged in the shape of a pumpkin -leftover candy and what to do with it

Step 2:

Slowly pour your warm water over the candy.

Encourage your scientist to answer these questions:

  • Before you add water, ask your scientist what they think will happen and why. This is called a hypothesis.
  • What happens to the letter on the candy?
  • Why do think the colors are moving?
  • Why do you think the colors aren’t mixing?
  • How do you think you could speed up the reaction
pouring water on leftover candy

Step 3:

Watch what happens! What do you observe?

Make it sweeter!

  • Make different designs. How are the color patterns different based on the design you make?
  • Add another piece of candy after you’ve added water and the colors have started to spread out. What happens?
  • Add a sugar cube to the candy after you’ve added the water and the colors have started to spread out. What happens?
  • Experiment with different water temperatures. What temperature works best?
  • Try using different candies. Which ones do you think will cause colors to spread out across the water
skittles in water with the colors swirling around - what happens to leftover candy

Expand on the Activity! 

The Science

  • The colored shells on Skittles and M&M’s are made out of sugar and food coloring. As the sugar and food coloring dissolve in water, they diffuse (or spread out) across it. This changes the clear water to the colors of the candy.

  • The colors move from the area with the highest concentration of color (the candy and the area right next to it) to the area with lowest concentration (the area farthest away from the candy). Watch how the color moves away from the candies. Molecules moving from an area of higher concentration to an area of lower concentration is called a concentration gradient.

  • The colors don’t mix because of something called water stratification. Each color of food coloring has a slightly different chemical make-up. Because of this, they have slightly different densities. This keeps the colors from mixing as they spread out.

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!

DIY pH Indicators: Turn Your Kitchen Into a Chemistry Lab!

Turn your kitchen into a chemistry lab by making your own DIY pH Indicators!

pH is a measurement of how acidic or basic something is on a scale of 0-14. 

 

Testing how acidic or basic something is with a color-changing indicator is a staple of many chemistry experiments. Now you can try it too! Turn your kitchen into a chemistry lab with DIY pH indicators!

 

A substance with a pH of 7 (like distilled water) is neutral. A substance with a pH of less than 7 is an acid. The closer the number gets to zero, the stronger the acid is. A substance with a pH of more than 7 is a base. The closer the number is to 14, the stronger the base is.

 

Try making one of these two natural DIY pH indicators and use it to test the pH of things you find around your home!

 

Recommend Age: 8+ with adult help for chopping and boiling.

Materials you will need for a red cabbage pH indicator:

  • Red cabbage
  • Knife and cutting board
  • Warm water
  • Blender
  • Strainer or funnel with coffee filter
  • Container to collect indicator


WARNING: Cabbage and blueberry juices can stain clothes! Mess-friendly play clothes or coverings such as aprons are recommended for this activity.

You can can make a variety ph indicators with Orlando Science Center

Directions for making red cabbage pH indicator:

STEP 1
  • Peel 3 or 4 big leaves off a head of red cabbage and chop the leaves into small pieces.
  • Fill a blender halfway with hot water.
  • Add the chopped cabbage leaves to the blender.
  • Blend the leaves and water on high until the liquid turns purple and all the leaves are blended.

    *Alternatively, you can boil the chopped leaves in just enough water to cover them for a few minutes, then let steep for 30-60 minutes.

Red cabbage for DIY pH indicators
STEP 2 
  • Place a strainer or funnel lined with a coffee filter over a container to collect the indictor, such as bowl, pot, or bottle.
  • Pour the mixture through the strainer to remove the cabbage pulp.
  • Push down on the pulp in the strainer with a spoon or spatula to squeeze out more liquid.
strain blended cabbage for purple diy ph indicator
STEP 3
  • The purple liquid in your container is your indicator solution. The exact color will vary depending on the pH of the water you used.
  • Experiment with the indicator using the ideas below!
  • Red cabbage indicator can be saved in a sealed container in the refrigerator for up to 1 week.
Result of blending red cabbage to create diy ph indicator

Materials you will need for a blueberry pH indicator:

  • 200g blueberries
  • Masher, spoon, or spatula to mash blueberries
  • Water
  • Pot
  • Strainer or funnel with coffee filter
  • Container to collect indicator

Directions for making blueberry pH indicator:

STEP 1
  • Mash the blueberries in a bowl or pot to release the blueberry juice.
  • Add mashed blueberries, juice, and a half cup of water to a pot.
  • Boil the blueberries for 5-10 minutes. The blueberry juice will turn red-purple.
Mash and boil blueberries to make a blue DIY ph indicator
STEP 2
  • Place a strainer or funnel lined with a coffee filter over a container to collect the indictor.
  • Pour the mixture through the strainer to remove the blueberry skins.
  • Push down on the skins in the strainer with a spoon or spatula to squeeze out more liquid.
  • The purple liquid in your container is your indicator solution. The exact color will vary depending on the pH of the water you used.
result of using blueberries to make another diy ph indicator

What to do with your DIY pH indicators 

Now that you have your pH indicators, it's time to get to testing! Use household liquids such as salt or distilled water, different fruit juices, milk, liquid detergent or soap, and more!

  • Add each of the substances you would like to test to the cups. (Only add one substance to each cup.) 
  • Add a spoonful of indicator to the first cup, and stir the indicator into the substance.
  • Observe the color changes. What do you see? Encourage your scientist to write down what color each substance turns. You can use crayons or markers to help keep track of color changes.
You can use different household liquids to test you DIY indicators

Expand on the Activity:

  • What color changes did you see? Did you notice any patterns?
  • If you use vinegar or lemon juice, what do you think will happen to the color of the DIY pH indicator if you add baking soda or an antacid tablet

  • For another hands-on chemistry experiment, try making your own STEM slime activity

The Science: pH and pH indicators

  • pH is a measurement of how acidic or basic something is. It is measured on a scale of 0-14.
  • A substance with a pH of 7 (like distilled water) is neutral. A substance with a pH of less than 7 is an acid. The closer the number gets to zero, the stronger the acid is. A substance with a pH of more than 7 is a base. The closer the number is to 14, the stronger the base is.
  • Strong acids and bases can be very dangerous, while weaker acids and bases (those with a pH close to 7) are safer to use.
  • We find acids in many of the foods we eat, as well as in our stomachs. Acids found in foods give them a sour taste.
  • Bases are commonly found in cleaning products and antacid medications. Bases feel slippery and are rare in food because they taste bitter. For reference, think about the taste of soap!
  • pH indicators are compounds that change color in the presence of an acid or a base.
  • Different pH indicators have different ranges. Some may only be able to show whether something is acidic or basic, while others may have a wide range of colors that can show different strengths of acids and bases. Some may be better for showing the pH of acids, while others may be better at showing the pH of bases. In a lab, the best indicator to use depends on the pH range you want to see.

Learn More: Chemistry

  • There are several different definitions of acids and bases in chemistry.
  • A simple chemical definition of an acid is a substance that releases hydrogen ions (H+) when dissolved in water. A simple chemical definition of a base is a substance that makes hydroxide ions (OH-) when dissolved in water or a substance that takes hydrogen ions from an acid.
  • Ions are positively (+) or negatively (-) charged particles of an element.
  • Many red, purple, and blue plants contain chemicals called anthocyanins, which are weak acids that dissolve in water and change color in response to changes in pH. Because of this, plants with anthocyanins like red cabbage and blueberries can easily be made into pH indicators.

Did you make and test your own indicator? We’d love to see how it turned out! Snap a photo of you making or experimenting with your indicator and submit it to our Science Showcase here or use #OSCatHome on social media!

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!