What to do with Leftover Candy? Learn Some Sweet Science with this STEM Experiment

Are you wondering what to do with leftover candy? You're in for a treat!

This experiment is sugar, and spice, and everything science! Join us as we dive into some chemistry (and our candy stash) and we'll give you a fun trick for what to do with your leftover treats. 

We'll use a little bit of candy to make pictures that swirl like magic, to explore chemistry, and to practice making predictions and observations.

Materials you will need:

  • Candy with a hard shell, like Skittles or M&M’s
  • Warm water
  • Shallow dish or plate that can hold liquid
skittles in a dish and water -leftover candy materials

Directions:

Step 1:

Arrange your candy in a design on your dish.

  • You can try arranging them in a circle around the edge of the dish, or making pictures with them. Since we're using Halloween candy, we made a pumpkin.
skittles arranged in the shape of a pumpkin -leftover candy and what to do with it

Step 2:

Slowly pour your warm water over the candy.

Encourage your scientist to answer these questions:

  • Before you add water, ask your scientist what they think will happen and why. This is called a hypothesis.
  • What happens to the letter on the candy?
  • Why do think the colors are moving?
  • Why do you think the colors aren’t mixing?
  • How do you think you could speed up the reaction
pouring water on leftover candy

Step 3:

Watch what happens! What do you observe?

Make it sweeter!

  • Make different designs. How are the color patterns different based on the design you make?
  • Add another piece of candy after you’ve added water and the colors have started to spread out. What happens?
  • Add a sugar cube to the candy after you’ve added the water and the colors have started to spread out. What happens?
  • Experiment with different water temperatures. What temperature works best?
  • Try using different candies. Which ones do you think will cause colors to spread out across the water
skittles in water with the colors swirling around - what happens to leftover candy

Expand on the Activity! 

The Science

  • The colored shells on Skittles and M&M’s are made out of sugar and food coloring. As the sugar and food coloring dissolve in water, they diffuse (or spread out) across it. This changes the clear water to the colors of the candy.

  • The colors move from the area with the highest concentration of color (the candy and the area right next to it) to the area with lowest concentration (the area farthest away from the candy). Watch how the color moves away from the candies. Molecules moving from an area of higher concentration to an area of lower concentration is called a concentration gradient.

  • The colors don’t mix because of something called water stratification. Each color of food coloring has a slightly different chemical make-up. Because of this, they have slightly different densities. This keeps the colors from mixing as they spread out.

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!

Kitchen Chemistry for Kids: Get Hands-On, Then Get Your Snack On

Learning has never been sweeter with this kitchen chemistry for kids of all ages!

Everything we interact within our day-to-day lives is made out of molecules. There are countless different kinds of molecules, each made out of atoms of different elements.

This kitchen chemistry for kids will help build an understanding of atoms and molecules as we create our own atomic marshmallow models!

Materials you will need:

  • Colored marshmallows
    *If you don’t have marshmallows, you can use clay, playdough, etc...
  • Toothpicks 
Materials for Kitchen Chemistry for Kids

Molecules:

Hydrogen (H2):

  • Some molecules are homonuclear, which means they are made up of just two atoms of the same element. Let’s make a homonuclear hydrogen molecule.
  • To make a hydrogen molecule, grab 2 marshmallows of the same color. Then connect them with toothpicks, as shown in the picture.
Kitchen Chemistry for Kids- hydrogen molecule

Water (H2O – Dihydrogen Monoxide):

  • The most important molecule for life on Earth is H2O, or water. It is made of 2 hydrogen atoms and 1 oxygen atom.
  • To make a water molecule, grab 2 marshmallows of one color and 1 of another. Then connect them with toothpicks, as shown in the picture. They should make a V shape.
Kitchen Chemistry for Kids- water molecule

Salt (NaCl – Sodium Chloride):

  • Salt molecules form cube-shaped crystals.
  • To make a salt molecule, you will need 8 marshmallows total, 4 of one color, and 4 of another. Connect them together in a cube, as shown in the picture
Kitchen Chemistry for Kids- salt molecule

Expand on this activity!

What other molecules can you make? Can you make methane? What about hydrogen peroxide? What’s the biggest molecule you can make? Check out MolView to see the digital models of all kinds of substances that you can base your marshmallow models off of!

Did you make your own marshmallow atomic models? We’d love to see how they turned out! Snap a photo of your models and submit it to our Science Showcase or tag Orlando Science Center and use #OSCatHome on social media! You might be featured on our channels.

The Science:

  • Real molecules aren’t held together by toothpicks. Instead, the atoms are bound together by positive and negative charges.
  • Water molecules are held together by covalent bonds, meaning they share negatively-charged particles called electrons.
  • Salt is a different kind of molecule, one that is made of ions. This happens when an atom gains or loses an electron. Sodium (Na) loves to get rid of electrons, so it is usually positive. Chloride (Cl) loves to steal electrons, so it is usually negative.
  • Molecules like this do not share electrons like water molecules do with covalent bonds. Instead, one atom gives an electron to the other, resulting in two charged atoms (ions). Just like with magnets, opposites attract. So, the positive sodium atoms and the negative chloride atoms will group together in the pattern that you’ve made. We call this an ionic bond.

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!

Tie-Dye Milk Experiment: Learn Chemistry in Your Kitchen

Learn about molecules and more with this tie-dye milk experiment

Make a rainbow of colors swirl around with materials you can find in your kitchen and a dash of science!

 

Atoms and molecules are the particles that makeup everything. What element or elements they are, how they’re arranged, how they move, and how they interact with each other determines how a substance looks, acts and reacts. However, atoms and molecules are very, very small. You could line up 70 million helium atoms in a row across a pencil eraser!

 

This makes them way too small to see with our own eyes or even with many microscopes. But we can observe molecules in motion with this tie-dye milk experiment.

Materials you will need:

  • Milk or cream
  • Food coloring
  • Cotton swabs or toothpicks
  • Dish soap
  • A dish or plate with a rim that can hold liquid.

Directions:

Step 1: First, add some milk or cream to your dish. You want to make sure the milk completely covers the bottom of the dish, but you don’t need to completely fill it.

A dish of milk for tie dye milk experiment

Step 2: Next, add 4 drops of food coloring to the center of the dish, being careful not to let them mix. Don’t stir the milk and food coloring! You want them to stay separate for now.

Add dye to milk

Step 3: Pick up your cotton swab or toothpick. Carefully cover one end of it with dish soap.

Add dish soap to a qtip to create tie-dye milk effect

Step 4: When you’re ready, touch the center of the milk with the soapy end of your swab and watch the colors move!

The result of tie-dye milk experiment

The Science of Tie-Dye Milk

  • Milk is a mixture. It’s mostly water, but it also has proteins, fats, and other molecules mixed in.
  • Because milk is mostly made up of water, it acts a lot like water and has many of the same properties.
  • One of these properties is called surface tension. Surface tension is how resistant a liquid is to external force, or how strong the surface of the liquid is. It’s a bit like the surface of water having a sort of “skin.” This is how some insects can walk on water.
  • Soap is what we call a surfactant. It lowers the surface tension of a liquid.
  • When we dip the soap in the milk, it lowers its surface tension and causes not just the water molecules, but fat and protein molecules, to move as they quickly rearrange themselves.
  • By adding food coloring, we can see the movement caused by lowering the surface tension.

Expand on This Activity:

  • Ask Your Scientist the Following Questions:
    • What new colors do you see?
    • How are the colors moving?
    • Why do you think this happened?
  • Keep Experimenting:
    • Press down on the bottom of the dish with the soap-covered cotton swab for three seconds, then lift up. How is the movement of the colors different than when you quickly touch the cotton swab to the milk’s surface?
    • Touch the cotton swab to areas where the colors have collected to watch the colors continue to move.
    • Try the experiment with more or fewer colors of food coloring. How is the tie-dye different?

The Science of Tie-Dye Milk

  • Milk is a mixture. It’s mostly water, but it also has proteins, fats, and other molecules mixed in.
  • Because milk is mostly made up of water, it acts a lot like water and has many of the same properties.
  • One of these properties is called surface tension. Surface tension is how resistant a liquid is to external force, or how strong the surface of the liquid is. It’s a bit like the surface of water having a sort of “skin.” This is how some insects can walk on water.
  • Soap is what we call a surfactant. It lowers the surface tension of a liquid.
  • When we dip the soap in the milk, it lowers its surface tension and causes not just the water molecules, but fat and protein molecules, to move as they quickly rearrange themselves.
  • By adding food coloring, we can see the movement caused by lowering the surface tension.

Learn More: Chemistry

  • Many atoms and molecules have positive (+) or negative (-) charges. An atom or molecule with no charge is called neutral. Positive and negatively charged atoms attract, just like the north and south poles of a magnet.
  • Molecules can be polar or nonpolar. Polar molecules have one side that is much more positive or negative than the other. Nonpolar molecules don’t have a difference in charge. Polar molecule likes to mix with other polar molecules, and nonpolar molecules like mix with other nonpolar molecules. Polar and nonpolar molecules don’t mix. This is what keeps oil and water separate; oil is made of nonpolar molecules and water is made of polar molecules!
  • Water molecules have a positive side and negative side. This makes water a polar molecule. Because of this, water molecules can stick to each other. Molecules in liquid sticking to each other is known as cohesion. The cohesion between the water molecules at the surface is what creates surface tension.
  • Soap molecules have a negative side and neutral side, so it has both a polar and nonpolar end. The negative side of the soap molecule is attracted to the positive side of the water molecule, weakening the attraction between the water molecules and lowering the surface tension.
  • But that’s not all. The neutral sides of the soap molecules also interact with the nonpolar fat molecules, separating them out of the milk. This is how soap is able to clean up greasy messes!

OSC At Home Emails

Get a round up of our latest activities and ideas delivered straight to your inbox so you don't miss a thing!

Find out when we release new resources by following us on social media!

 

Follow us on social media for even more science fun including fun facts, games, behind-the-scenes photos, and more!

 

Facebook Logo Instagram Logo YouTube Logo Twitter Logo

Support OSC At Home

In these ever-changing times, it is our pleasure to adapt quality Orlando Science Center experiences to engage with everyone while they are safe at home. Please consider supporting our operating fund to ensure we can continue developing resources today and well into the future. Thank you for your generosity and support!